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The effect of velocity sensitivity on temperature 
derivative statistics in isotropic turbulence 

By J. C. WYNGAARD 
Air Force Cambridge Research Laboratories, Bedford, Mess. 01730 

(Received 13 October 1970) 

The velocity sensitivity of a resistance-wire temperature sensor is expressed in 
terms of sensor parameters, and the resulting errors in temperature derivative 
moments in isotropic turbulence are evaluated. It is shown that velocity sensi- 
tivity of a degree completely negligible for most purposes causes severe con- 
tamination of the measured third moment. The contamination terms are shown 
to be production rates of the mean square temperature gradient and vorticity, 
respectively, and therefore create positive values of measured derivative skew- 
ness. The dominant contamination term is related to the temperature spectrum 
through the balance equation for the mean-square temperature gradient, and 
calculations based on an assumed spectral form show that under typical condi- 
tions the measured skewness is large. This mechanism could provide an 
alternative to anisotropy as an explanation of the positive skewnesses recently 
measured in the atmosphere. 

1. Introduction 
Thin resistance-wire temperature sensors are often used to measure tempera- 

ture fluctuations in turbulence. Recent atmospheric experiments (reported by 
Stewart 1969 and Gibson, Stegen & Williams 1970) with very small wires have 
given data on temperature derivative statistics, including skewness and the rate 
of molecular dissipation of temperature fluctuations. Such data are useful in 
testing, for example, the postulate that the fine structure of temperature fields 
at large Reynolds number is universal and isotropic. The purpose of this paper is 
to point out that velocity sensitivity of the sensor can have a strong influence on 
certain temperature derivative statistics in isotropic turbulence, and that unless 
the effect is minimized the fine structure will appear to be non-universal and 
anisotropic. 

2. Velocity sensitivity 
Velocity sensitivity occurs because a resistance-type sensor operates slightly 

above the ambient fluid temperature due to the heating effect of the small 
current it carries. The current is necessary to detect resistance fluctuations, 
which are proportional to the wire temperature changes caused by temperature 
fluctuations in the ambient fluid. Since the wire is slightly overheated, its tem- 
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perature also responds to changes in the heat-transfer coefficient caused by fluid 
velocity changes. A gust of higher speed constant-temperature fluid increases the 
rate of heat transfer and decreases the wire temperature; this is interpreted in the 
instrument output as an ambient temperature decrease. The apparent, or 
measured, fluctuating temperature signal from a sensor normal to the flow there- 
fore contains an unwanted component due to the streamwise velocity sensitivity : 

P = e-cul. (1) 
In practice the velocity sensitivity c is kept small by keeping the wire overheat 

low, and the error in temperature variance is usually quite small. However, not 
all temperature statistics are measured with comparable accuracy. To investi- 
gate the effect on derivatives, we start from 

which is obtained from (1)  by interpreting time derivatives as streamwise (5,) 

derivatives through Taylor's hypothesis. Second moments in isotropic turbulence 
are therefore measured as 

The third moment of ae/ax, vanishes in isotropic turbulence, but ( 2 )  shows that 
its measured value does not 

Although the second term on the right of (4) is the more familiar, we will now 
show that the first term is usually more important. In  the process, we will reveal 
the similar roles they play in the dynamics of turbulent vorticity and temperature 
gradient fields. 

We start from the balance equation for mean-square turbulent vorticity in 
large Reynolds number, stationary turbulence, 

This expresses the average balance that exists between the production rate 
caused by vortex stretching and the viscous destruction rate. The production 
rate can be written 

by the definition of vorticity and from isotropy. Therefore - (aul/ax1)3 is a pro- 
duction rate of mean-square turbulent vorticity, and is required to be positive; 
(4) then shows that this contributes to positive values of (a/3/ax1)3". 

We can make an analogous interpretation of 

ae ae au, 
ax, ax, ax, 
_ _ _  
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by using the balance equation for the mean-square temperature gradient. We 
start from the fluctuating temperature equation 

Here q. is the mean velocity, G is the mean temperature, and D is the thermal 
diffusivity of the fluid. Differentiating with respect to xi, multiplying by 2aejaxi, 
and averaging then gives a balance equation for (ae/ax,)2. In  large Reynolds 
number, stationary turbulence, this looks much like the mean-square vorticity 
equation, 

The third moment in this balance equation is evidently the production rate of 
aejax, %/axd caused by the stretching of the temperature field by the turbulent 
strain field. This is balanced, on the average, by molecular smoothing of the tem- 
perature gradient field. Isotropy implies that the production term is 

. .  

~ - -  so we can interpret 
ae ae au, 
ax, axl ax, 

_--- 

as a production rate of mean-square temperature gradient, and it is positive. 
Both terms on the right of (4) are therefore positive, and the measured value of 
( ae/axl)3 in isotropic turbulence will also be positive. 

That 
ae ae a%, 
axl &, ax, 

should be negative can also be seen intuitively.? In regions where aul/axl is 
positive, the temperature field is being stretched, and we expect reduced values 
of (ae/ax,)? Conversely, where au,/ax, is negative, we expect stronger temperature 
gradients; these contributions should dominate, making 

ae ao au, 
ax, ax, ax, 
--- 

negative. 
We know therefore that positive skewness of aO/ax, will be measured in 

isotropic turbulence, but its magnitude remains to be estimated. The case of 
most practical importance involves a velocity sensitivity sufficiently small that 
the error in the temperature gradient variance, as indicated by (3), is negligible; 
in this case the mixed third moment dominates in (4), and we have 

ae ae awl 
ax, ax, ax, 

=-3c---. 

-f The author is indebted to an anonymous referee for this interpretation. 
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There appear to be no published measurements of 

ae ae au, 
ax, ax, ax, ' 
_ _ _  

so we cannot directly evaluate (10). We can, however, turn to (8) and (9) and 
write 

a28 a2e 

ax, axi axi axj ' 
= 0 . 4 ~ D  ~ - 

which can in turn be written in terms of the temperature spectrum: 

Here @(K) is the temperature spectrum, which has the property 
- 

@(K) dK1 dK2 dK,  = e2. (13) 
. l / . l I m  

Since isotropy implies that @ can depend only on K, the magnitude of K, we can 
integrate over spherical shells and write (12) as 

where F(K),  called the three-dimensional temperature spectrum, is 

Corrsin (1964) and Pao (1965) have proposed the following form for P(K) ,  
which we will use for estimation purposes : 

(16) 

F ( K )  = 47TK2@(K). (15) 

F ( K )  = nXe-hc-% exp ( - $nDe-b&). 

n is an adjustable constant, and x and e are the rates of molecular dissipation of 
temperature variance and turbulent kinetic energy; they can be written as 

While using this form for F ( K )  to estimate the third-moment error according to 
(14), we can also use it to check the magnitude of 

Fa0 ae au, 
ax, axl ax, - _-_ 

From (10) and (14), we have 

ae ae au, -D 
axlaxlax, 7.5 .low K 4 F ( K )  d K .  

Carrying out the integration, 
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At this point we need a value for n. Because of the K4 in the integrands of 
(14)  and (18) ,  the results depend most strongly on the spectral form in the dis- 
sipative range; ideally then n would be chosen to  make at least that portion of 
our assumed spectrum agree with observations. This does not appear possible at 
presentfor two reasons. First, F(K) is not directly measureable. It can, however, be 
related to the one-dimensional spectrum E;(K,), which can be measured, 

Second, most of the published measurements of F,(K~) are confined to wave- 
numbers below the dissipative range. In  that region, (16) and (20) give 

F' (K~)  = $nxdKi+.  (21)  

Available data indicate, although not conclusively, that in (21)  n N 0.6 and we 
will base our estimates on this value. 

In  air, our estimates (19)  become 

The second prediction should not be too difficult to check experimentally. To 

Heat transfer from a long thin wire in forced convection is expressed by 
use the first, we must find an expression for the velocity sensitivity c.  

(23)  
ao, PR-H(O,-@) = c--, 
at 

where I is thewire current, R its resistance, C its heat capacity, His the convective 
heat transfer coefficient, and 0 and 0, are ambient fluid and wire temperatures. 
I n  constant-current operation in turbulence, R, H ,  and 0 vary with time, and 
we break them into mean and fluctuating parts: 

I R = R+r ,  
H = a + h ,  

o = @+8, 

0, = GW+OW. 

The linearized equation for the fluctuations, obtained by substituting (24)  into 
(23) ,  is 

G ae, h -  - 

H at H e,+=- = e-=(@,-o), 

for small overheats. This equation verifies the earlier statement that the wire 
temperature responds not only to ambient temperature changes, but also to 
changes in the heat-transfer coefficient. It shows that the apparent or measured 
fluid temperature fluctuation is 

- -  
Om = 6 - (h /H)  (0, - 8). (26) 
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In  order to relate h / a  to the velocity sensitivity c, we use the results of Collis & 
Williams (1959)) presented in the survey paper by Corrsin (1963, p. 524), for 
heat transfer from hot wires. They found for the range 0.02 6 Re < 44 in air 

= nZk(0.24-t 0.56 Re0.45), ( 2 7 )  

where Re is the Reynolds number based on wire diameter and flow speed normal 
to the wire, 1 is wire length, and k is the thermal conductivity of air. It follows 
from ( 2 7 )  that for small fluctuation levels 

h u1 [ 0.25Re0.45 ] - - -  
- gl 0.24 + 0.56 Re0.45 . 

From (l), (26) and (28) the expression for velocity sensitivity is, in terms of 
easily-measured quantities, 

I2R(0.25 Re0.45) 
7~k10~(0.24 + 0.56 Re0,45)2 ' 

C =  (29) 

3. The effect under typical atmospheric conditions 
A calculation using parameters typical of recent atmospheric experiments 

(0.6micron diameter platinurnwire carrying 0.3 ma in a 5 m/sec air flow) shows the 
importance of velocity sensitivity. For this wire R/Z = 3150 Q/cm, and (29) gives 
c = 0.00032 "C sec cm-l. Direct experience with this wire in the velocity-sensing 
mode allows an independent estimate of c, without the use of (27); this gives 
a c value about 50 % less. The difference is probabIy due to uncertainties in both 
estimates, and we take the average, c = 0*00024° C sec cm-l, as representative. 
We use values of temperature and velocity gradients from the study of Gibson 
et al. (1970) of atmospheric turbulence over the sea, 

( ~ u , / ~ s , ) ~  = 29ser2;  (a19/az,)~ = 1.8 x "C2 

Equation (3) shows that the second moment is hardly affected by the velocity 
sensitivity, 

(E)"" = 1.01 (g)p, (31) 

However, (22) shows that the measured skewness, which in our isotropic model 
is entirely due to velocity sensitivity, is large: 

The values given by Stewart (1969) and Gibson et al. (1970) for skewness 
measured with fine resistance wires in the atmosphere are in the range 0.4 to 1.0, 
and have been cited as evidence that high Reynolds number turbulence need not 
be even locally isotropic. The present results suggest that these large skewnesses 
could be the result of velocity sensitivity contamininating the measurement of 
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a locally isotropic temperature field. On the other hand, the temperature deriva- 
tive field could be skew, and therefore anisotropic; in this case the relevance of 
the present isotropic calculations is not clear. It appears that more data, in 
which the effects of velocity sensitivity are carefully accounted for, are needed 
to settle this question. 
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